Multi-GPU Sort-Last Volume Visualization

Stéphane Marchesin, Catherine Mongenet, Jean-Michel Dischler

Louis Pasteur University, Strasbourg

30/04/08
Introduction

- Large scale visualization
 - Uses clusters
- Multi-GPU systems are a cheaper alternative
 - Different characteristics
 - Different optimization opportunities
 - Few work
 - Specific hardware
Related Works

- Sort-last vs Sort-first (Molnar et al.)
- Multipipe SDK (Bhaniramka et al.)
- Optimize compositing (Ma et al., Stompel et al.)
Approach

- Conduct a study
 - Compare 2 architectures
 - Specificities
 - Performance implications
 - Sort-last pipeline approaches
 - Different pipelines
 - Different optimizations
 - Resulting performance
Pipeline Optimizations

- Rendering
 - Brick size
 - Slicing vs Raycasting
 - Vertex submission
Pipeline Optimizations

- **Readback**
 - Data (red lines)
 - Full readback (white)
 - Screen-space bounding boxes (blue)
 - Screen-space aligned bounding boxes (yellow)
 - Span-based readback (green)
Pipeline Optimizations

- Composition
 - CPU-based composition
 - Read all subpictures
 - Compose on the CPU
 - Send back the result to the main GPU
 - GPU-based composition
 - Makes sense on a multi-GPU system
 - Read all subpictures but one
 - Send all the subpictures to the main GPU
 - Compose on the GPU
Results

Comparison

- Multi-GPU, Pentium D, GeForce 7800GT
 - 4 GPUs
 - Maximal number of GPUs
- Cluster, Athlon X2, GeForce 7800GT
 - 4+1 nodes
- Same codebase
- 2 datasets
 - Xmas tree 512^3
 - Geological 1024^3
Results: Brick Size With Slicing
Results: Brick Size With Raycasting

![Graph showing the relationship between brick size and frames per second for different GPU and dataset configurations.]
Results: Vertex Submission

Graph showing frames per second for different vertex submission methods and dataset sizes.
Results: Readback
Results: Scalability, CPU Compositing

![Diagram showing frames per second vs. resolution for different GPU configurations.](image-url)
Results: Scalability, GPU Compositing
Results: Compositing Speed

![Graph showing compositing speed results with different configurations.](image-url)
Results: Scalability
Results: Breakup Of The Times
Conclusions

- Slicing is still faster
 - On both architectures
 - Raycasting has slightly better quality
- Brick size
 - Matters especially in the multi-GPU case
- Readback
 - Overhead of reading small areas too high
 - Bounding rectangles is fastest
Conclusions

- **Composition**
 - Faster on the GPU in high PPS situations
 - Faster on the CPU in low PPS situations
 - Spares GPU time in the most draw-intensive situations

- **Multi-GPU and cluster performance are equivalent**
 - For the same number of GPUs

- **Multi-GPU is a competitive solution**
Future Works

- Tighter coupling between GPUs
 - Potential for speedup from exchanging information
- Further multi-GPU scalability
 - Not possible in a single machine
 - Clusters of multi-GPU machines
 - New hierarchical algorithms
Questions ?